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SUPPLY SYSTEMS
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CHAPTER 12

EXPECTED ANNUAL LOSSES
FROM DROUGHT

Our aim now is to put together a planning model designed to answer
questions about the optimal size and timing of increments to the supply
capability of municipal systems, a model drawing together the separate
threads represented by the study of the physical and economic impact of
the 1963-66 drought as reported in Parts I and II. To this end we first
demonstrate how we may use probability distributions of climatic events
to produce functions relating chosen levels of system inadequacy to ex-
pected levels of per capita annual losses from water shortage (drought).
If we think in terms of the inventory-control or capacity-expansion models
used by other authors,! the expected annual loss functions we develop are
seen as the penalties attached to ““‘undercapacity,” although in our model
there is no line between under- and over-capacity as such but only degrees
of relative inadequacy as represented by the chosen level of the projected-
demand/safe-yield ratio.

In order to make rational decisions about avoiding losses, we need to
know the cost of doing so. In our model, this cost will be that of adding
increments of safe yield to the water system. In Chapter 13, we describe
two independent derivations of such a function. Then, in Chapter 14, we
set out the planning model constructed from these building blocks. We
discuss the form the model takes when expressed as a nonlinear program-
ming problem and then go on to explain briefly the method used in finding

1 See for example, H. B. Chenery, “Overcapacity and the Acceleration Principle,”
Econometrica, 20 (1952), 1-28; A. S. Manne, “Capacity Expansion and Probabilistic
Growth,” Econometrica, 29 (1961), 632-49; A. S. Manne, Investment for Capacity
Expansion (Cambridge: Massachusetts Institute of Technology Press, 1967); and
H. A. Thomas, “Capacity Expansion of Public Works,” Division of Engineering and
Applied Science, Harvard University (mimeo.), 1967.
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138 Planning Mode! for Municipal Supply

the solutions. We also summarize the results of applying the planning
model to hypothetical water systems under various assumptions about the
relevant parameters. First, we assume away, temporarily, the important
question of uncertainty in the projections of demand, being initially con-
cerned with exploring the sensitivity of our model to changes in such
parameters as the rate of discount, the scaling factor in the safe-yield cost
function, and the exponent in the expected-loss function.? Finally, we take
account of the uncertainty inherent in projections of the rates of growth
of population and per capita daily demand averaged over the year.
Essentially we ask how much the town can expect to lose by building ac-
cording to a plan optimal for the “best” estimates of these growth rates,
when in fact other growth rates may actually occur.

One final general comment is in order. In constructing a planning model
which minimizes the sum of capacity costs and shortage losses in deter-
mining optimal patterns of size and timing of additions to safe yield, we
must assume that all alternative paths seek to provide the same streams of
gross benefits.? Specifically, we assume that no price changes are to take
place over the planning horizon, and that the demand functions for system
water supply are to be independent of the decisions made by the planners.
(This neglects any influence that uncertainty of supply itself might have on
demand.)* Then the benefits which result from meeting demand under any
plan are the same. The differences between the plans lie in their capital
costs and in the extent to which they may be expected to provide for de-
mand in the face of a variable climate (drought losses). Minimizing the
sum of capital costs and expected drought losses gives us the optimal plan
under the given demand conditions.

ESTIMATING EXPECTED-LOSS FUNCTION

We are interested in two sets of expected-loss functions: one corre-
sponding to the a priori model of drought impact; and the other based on
the empirical relation between shortage and inadequacy estimated from
the actual drought data. (Both relations were discussed in Chapter 7.) It
will be seen that the functions implied by these two different views are

2 This function, as we shall see, is of the form:
E(L)y = UD/|Yy

where E(L) is expected annual loss, D is average daily system demand, Y is system safe
yield in daily draft terms, and U and z are parameters. We are interested in the model’s
sensitivity to changes in our estimate of z.

3 Peter O. Steiner, “The Role of Alternative Cost in Project Design and Selection,”
Quarterly Journal of Economics, 79 (1965), 415-30.

4 See Stephen Turnovsky, “The Responses of Economic Factors to Uncertainty in
Supply,” in Models for Regional Water Management, R. Dorfman, H. Jacoby, and
H. Thomas, eds., to be published by Harvard University Press.
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themselves dramatically different. Specifically, expected losses rise very
much more rapidly with declining system adequacy (rising demand/supply
ratio) under the hypothesis that the a priori model is, in fact, an accurate
description of the world.’
The Relation Between Shortage and System Adequacy: A Reminder

We pause to remind the reader of the two alternative forms of the

shortage-adequacy relation growing out of our work in Chapter 7.

The A Priori Model.

Si = 100[1 — (a/*/aq)] (12-1)
where a;; = D./Y; and «,* is the fraction of safe-yield flows available
in year ¢.5

The Empirical Model.
Si = Blay — a/] (12-2)
where 8 = 20 and
, A, Cumulative Precipitation Deviation 1908-11

* 7 A, Cumulative Precipitation Deviation (years ¢-3 through 1)

and «, is the level of a;, at which shortages begin to occur.

PROBABILITY OF SHORTAGES

We wish to find the probability of a shortage of size § < § < § occur-
ring in a city served by a system having inadequacy level &, = I. This
probability clearly will depend on the distribution of climatic events for

51t is unfortunaté that the full implications of a priori models designed to determine
percentage of safe-yield flows available were not realized earlier. Work based on the
empirically determined relation between shortage and adequacy consistently suggests
that public and managerial concern over drought is exaggerated. The a priori model,
however, tends to lend support to high level of this concern, and in the context of
the planning model, leads to capacity expansion programs which look very much like
patterns which have been criticized as “‘overbuilding™ when they have appeared in the
real world. (See Part V.)

6 Based on the experimentation, referred to earlier, with streamflow and rainfall
records, «,* has been estimated from the relation:

(cumulated total precipitation years -3 to 7)?
(cumulated total precipitation years 1908—11)2

*

ay

As noted in Chapters 6 and 7, the actual results of this experimentation and of our
attempts to test the a priori model were basically disappointing. It still seems, however,
to be worth while to present the loss functions based on the a priori model.
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that town. The latter distribution will define the probability of an event
Ar < af < A* (or A; < a < AY); that is, the probability of a natural
event sufficiently severe to cause a shortage in the size interval of interest.
For a given «y, the larger shortage, S, will correspond to the more severe
climatic event A, i.e., the lower percentage of system safe yield available
for delivery.?

APPROXIMATION OF EXPECTED LOSSES

Repeated application of the above methods will provide us with the
probabilities of shortages in the range Sto S + AS percent,for S = 0, ...
50, ..., for any given level of «. We chose to calculate these probabilities
for «.= 0.35, 045, ...,1.45,...and to let AS = 2 percent. We may
then approximate the expected loss corresponding to a particular chosen
a by identifying with the interval S to S + 2 percent, the per capita annual
losses associated with (S + 1) percent. The appropriate loss data may be
read from the functions in Figure 19 for the interval up to about 25 percent
shortage. For higher shortages, we approximated the per capita annual
losses by functions roughly fitted to the lower interval points for each of
the curves, local/20 percent and national/8 percent. The expected loss
assoclated with a particular inadequacy ratio, 7, is then approximated by:

98
EQL) =Y. Prob(S' < S< S8+ 2a=10-LS"+ 1) (12:3)
S'=0

where L(S” + 1) is the per capita annual loss associated with a shortage
of size (" + 1).2

7 For the a priori model, the expression Prob (§ < § < E/a = I) may be translated

into:
*
Prob [100 <1 — %) < S <100 <1 — A~1*>:|,

(100 — S) 1(100 — S)
L e < = |.
Pr°b|: 100 =% =7 100 :l

This last expression may be evaluated in terms of the relevant distribution of climatic
events.

For the empirical relation, the corresponding probability expression is

O )

8 This expected-loss level is, strictly speaking, a long-run concept; the loss which
would, on the average, occur annually in a town which maintained a particular level of
the D /Y ratio over a long period. As we use it here, the concept may be considered as a
best estimate of the loss likely to occur in a town with a particular D /Y ratio in a
particular year.

Concentration on expected value, which seems entirely adequate with respect to the
results from the empirical model, may be questioned when dealing with the a priori
model because of the rather large losses encountered there.

which is equal to
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The results of these calculations are summarized graphically in Figure 20,
where we present the expected annual loss functions under both the local/
20 percent and the national/8 percent accounting combinations and for
both the a priori and empirical models. The expected-loss functions asso-
ciated with the a priori model rise much more rapidly than those asso-
ciated with the empirical model. The former are, indeed, almost vertical
in the interval above about @ = 1.10. We shall see that the use of this sort
of function has some significant implications for the planning of system
expansion.

$4.50
I /
i /
$4.00 I I
/
Apriori model, I II
$3.50 local 20% /
[
l
|
$3.00 I Apriori model,
l I national 8%
|
$2.50 / II

»
N
o
o
T
—
~——

Expected per capita losses (annual)

$1.50 / /
/
/I
1
$1.00 II
/ 7
/4
/J
$0.50 - 74 «~” Empirical model,
// F national 8%
i
$0.00 L,Vf’l | eeme®T 1 1 1 1 1 L 1
45 .60 .75 .90 1.05 1.20 1.35 1.50 1.65 1.80 1.95

System inadequacy (oc)

Figure 20. Expected-loss functions.



142 Planning Model for Municipal Supply

ESTIMATION OF THE PARAMETERS OF EXPECTED-LOSS FUNCTIONS

In order to retain the simplest possible loss-function form for use in the
planning model, and because it seemed conceptually correct, we fitted to
our estimates of expected losses for given «, functions of the form:

E(L) = U(ay (dollars per capita per year).

The results of this operation are summarized below in Table 35.

TABLE 35. PARAMETERS OF THE EXPECTED-LOss FUNCTIONS

(3 per capita per year)

1. A priori model:
Local /20 percent account  Ey(L) = 0.1(a)'20
National /8 percent account ExL) = 0. l{a)7

I1. Empirical model: (fitting to points above 0.35)
Local /20 percent account EyL) = 0.1 (a)*
National /8 percent account E(L) = 0.1(a)'®

[1I. Empirical model: (fitting to points above 0.95)
Local /20 percent account Es (L) = 0.1(a)*8
National /8 percent account  E¢(L) = 0.1(a)*?

Note: The extraordinary constancy of the estimates
of u was caused by the relative constancy of the esti-
mates of expected losses for all stances and models in
the interval about @ = 1.00. These were invariably in
the range $0.10 to $0.13.

In our exploration of the sensitivity of the planning model to parameter
changes we use four different values of z: 3.2, 4.3, 5.4, and 12.0. These
effectively cover the range of results presented in Table 35, and it seems
likely that they span the “true” values.

Now that we have our functions relating chosen inadequacy levels to
expected drought losses, we need only one more bit of information to be
able to construct the planning model: an estimate of the cost of improving
the level of system adequacy.



