CHAPTER 14

A CAPACITY EXPANSION
PLANNING MODEL FOR
MUNICIPAL WATER SUPPLY
SYSTEMS

The model presented in this chapter is designed to provide a framework
for balancing expected drought losses as a function of chosen adequacy
level against the costs of improving that adequacy level. As mentioned
above, it is in the tradition of inventory-adjustment/capacity-expansion
models applied by others, although most such applications have taken
deterministic forms. Because of the probabilistic nature of our capacity
variable, there is no distinction in our model between under- and over-
capacity, no line at which costs begin to be incurred. This feature, the fact
that inadequacy is entirely a relative concept, results from the lack of any
upper limit to drought severity. In principle, no matter how large a system’s
safe yield relative to its demand, a drought can occur that will be severe
enough to cause shortage for that system.!

The choice variables controlled by the planners, subject to certain con-
straints, are the timing and sizes of increments to the system’s safe yield.
By choosing a time path of the level of system safe yield with given infor-
mation about the rate of growth of demand, the planners determine a total
present value of capital costs and a discounted sum of expected annual
drought losses. The optimal plan for given growth rates and other param-
eters is the one which minimizes the total of these discounted costs and
losses. We choose to work with a planning horizon of 60 years.

t In practical computations, of course, one has to draw the line on significant decimal
places somewhere. If that line is drawn for probabilities at the fourth decimal place
(numbers smaller than 1 X 10~1 are counted as zero), then any system with a D /Y ratio
less than 0.3 is effectively drought-proof.
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BASIC STRUCTURE OF THE MODEL

In Figure 21, we represent schematically the choice variables and result-
ing time paths of key variables for a particular plan choice. Note that we
limit the decision variables to six: four increments, two of which must be
constructed in years 0 and 60, and two at intermediate times. Each of
these variables is continuous and, naturally, all are constrained to be non-
negative. The times are further constrained to be less than 60.

In order both to make provision for the post-horizon future, and to
standardize the set of possible paths, we introduce the constraint that at
the end of year 60, the total safe yield constructed as part of the plan must
equal the total growth in demand over the horizon. Thus, if we start with
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Figure 21. Schematic of choice variables and resulting time paths of key variables for
a particular plan choice.
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projected demand equal to safe yield in year zero, the same must be true
at the end of year 60. This particular method of handling the bequest
problem is recommended by its simplicity, but it also seems in some
sense fair: we bequeath the same situation we have inherited in terms of
our measure of relative adequacy.

FUNCTIONAL FORMS: A REVIEW AND CONSOLIDATION

We assume, first, that population and per capita demand grow ex-
ponentially according to the formulae:

Population in year “f> = N, = N,* (14-1)
Projected Per Capita Demand? in year “¢” = P, = P,e" (14-2)
We may thus express the total demand in year ¢ as
D = N, - P, = NP ftnt =D (14-3)
where N, - P, = D,and o« = B + 7.
The capital costs of safe-yield expansion are given by:
C(ASY) = K(ASY)y
or, if ASY = s, = 59, 51, 52 OT Seo (14-4)
C(s)) = K(sp)7; (v generally < 1).
And so the present value of the cost of the increment s; is:
PVIC - (5)] = K(s)ve™ (14-5)

where p is the discount rate.

Now, the treatment of the expected losses from water shortage is, of
necessity, more complex. From Chapter 12, we recall that expected annual
per capita losses from drought for time ¢ accrue at the rate

EAL, = U[D,/Y.F (14-6)
for given projected demand and chosen level of safe yield. In order to
express this function in the terms we are presently employing, we define,

T = level of safe yield inherited from the past. Then Equation 14-6 be-
comes.

Doe(ﬁ+7)t z
EAL, = U| ——— 14-7
! [.f + So + P ( )
where Y, = 5+ s, + ..., and the exact composition of the denominator

will depend on how many increments have been added prior to time r.

2 We shall express both demand and safe yield in average daily terms. Our cost func-
tions are standardized for arguments in millions of gallons per day (mgd). Hence, P,
is per capita daily demand in millions of gallons per day.
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This implies that the rozal expected losses during a small period At, occur-
ring at time ¢ will be:

D, (B+)t P D, "

TEL, = U[_—’e-—’— N ePAt = UN, | —— 2 | el Pt
N + So + ..

(14-8)

S+ so+ ...
where, we recall, « = 8 + .

The present value of the total expected losses for the periods Af at time
¢ will then be:

D, °
_ (ez+8—p)t i
PV(TEL,) = UN, [s i i] e At (14-9)

The next step is the computation of the total contribution to the present
value of losses of a period between additions of safe yield. Let us, for
example, consider the total present value of the losses suffered between
time T, and T,. Integrating, we have:

T Do z
Total EL(T:,T]) Z/ UN, (m) elaztB—nlt gy (14_10)
0 1

which is particularly simple because ¢ only appears in the exponent of e.
Equation 14-10 gives us

[otal EL - ( NO )( ’ )z
ota :
(T2, Th) 8 p E So I_ $1
[e(az +8—p) T2 e(az +8-—p) Tl]_ (14-1 1)

T

The objective function for the planning model may then be written in
its entirety:
Total present value of costs and losses = 6(Sy, S1, Se, Sso, T1, T2)

= > K(s)e '+

t=0,T1,T260

N U(D,y
az+8—p
+ (S——{— so + sl)—z(e(aZ-HS—p)Tz _ e(az+ﬂ—p)T;)
+ G+ 50+ 51+ 5)7(e&F T Pl BT (14-12)

The constraint set includes:?

+ [(§+ SO)—z(e(az-Hl—n)Tx _ 1)

S, = D% — 1)

t=0,T1,T2,60
(14-13)
3 If we wish to allow for an inequality we may write:
So + 81+ S2 + Se0 — S = PD,(efe — 1)
where s, is a slack variable and s, > 0. This formulation might be useful where demand

is growing slowly or not at all and some capacity above the minimum required to cover
that growth might reduce drought losses by enough to be worth while.
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S; > 0allt
and?
0< T, <60,

0< T, <60,

The following constants retained the values indicated for all runs:*

N, = 10°
D, = 10(mgd)
P, = 10~ mgd)
and,
K = 1.28 X 10%;
U =0.l.

GENERAL COMMENTS

The capital-cost portion of the objective function is concave (since
y < 1). Thus, without consideration of drought losses, the minimum-
cost plan would be the construction of the entire required increment in the
final year.® When, however, we include drought losses the situation be-
comes at once more complicated and more promising for meaningful
minimization solutions.

METHODS OF SOLUTION

Two methods were used in finding the solutions to this programming
problem. First, as a method of developing some familiarity with the be-
havior of the solutions, a rather simple search technique was employed.
Then, a nonlinear programming algorithm based on the method of

1 The objective function as formulated above depends on T being less than T,. It
might seem that it would be necessary to add a constraint to this effect; for example,
writing Ty + Ts = T, with T, > 0, a slack variable. In practice, however, this problem
did not arise in any of our many solution runs, and we have not included such a con-
straint. One conjectures that since one increment must necessarily be added later than
the other (unless 7, = T%) the problem is only one of labeling.

5 As noted later, a few runs were made with N, = 50,000 in connection with compari-
son of our optimality “rules of thumb” and the actual expansion histories of three
Massachusetts systems.

6 Since there is effectively one constraint, the extreme point vector will have only one
non-zero element. This implies the economically sensible result that either s, or s5 must
be non-zero, since the other four variables are, in a sense, paired. At a positive discount
rate, everything will be built in year 60; with a zero discount rate, the planner would be
indifferent between the first and last years.
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Zoutendijk was applied.” These methods are both discussed in somewhat
more detail in Appendix H, while the actual results are discussed below.

RESULTS OF SOLUTION OF THE MODEL FOR VARIOUS
PARAMETER VALUES

We are interested here in changes in total costs and in the elements of
the solution vector in response to changes in the scaling factor, the discount
rate (p), and the key drought loss-function parameter (z). The combinations
of parameters for which the model was solved are listed in Table 39.

TABLE 39. COMBINATIONS OF INITIAL VECTORS AND PARAMETER
VaLUgs Usep IN COMPUTER RUNs

Per capita daily

Loss Safe yield Population consumption
function scale Discount rate of rate of
Initial parameter factor rate growth growth
vectors z ¥y p B8 ¥
3.2
1 0.88 0.07
4.3
2 0.78 0.05 0.015 0.020
5.4
3 0.68 0.03
12.0

(108 runs total)

0.000 0.000

2 4.3
ti 0.78 ] |: 0.05 } 0.015 0.020

3 12.0
0.030 0.040

(36 runs total)

The ““best” solution vectors and costs are shown in Table 40 for the
36 combinations of y, p, and z. We report here the total costs, capital
costs, and drought losses to the nearest thousand dollars. Times (77 and
Ts) are reported to the nearest tenth of a year and capacity increments to
the nearest hundredth mgd.® (8 = 0.015; v = 0.020.)

7 See G. Zoutendijk, Methods of Feasible Directions (Amsterdam: Elsevier, 1960).
8 For a comparison of the results found using the search technique with the pro-
gramming solutions, see Appendix H.



154 Planning Model for Municipal Supply

TaBLE 40. SENSITIVITY OF RESULTS TO PARAMETER CHANGES
(costs given in 31,000)

Total Capital Drought
VA Y P cost cost loss ' T, So St S. Seo

12.0 0.88 0.07 1,339 1,182 157 15.2 34.5 4.52 12.66 34.78 19.71
12.0 0.88 0.05 1,898 1,723 175 17.4 37.4 5.99 15.04 34.95 15.67

12.0 0.88 0.03 2,922 2,743 178 20.1 40.0 8.12 18.06 35.68 9.80
12.0 0.78 0.07 1,088 971 117 15.2 34.6 4.81 13.18 36.40 17.27
12.0 0.78 0.05 1,497 1,372 125 17.5 37.7 6.37 15.87 36.79 12.63
12.0 0.78 0.03 2,214 2,130 84 20.8 42.8 9.59 21.28 40.80 O

12.0 0.68 0.07 883 799 84 15.7 35.3 5.37 14.13 37.76 14.41
12.0 0.68 0.05 1,179 1,092 87 18.7 39.5 7.32 18.04 37.88 8.42
12.0 0.68 0.03 1,712 1,623 89 26.0 53.0 13.54 32.98 25.63 O

5.4 0.88 0.07 1,145 838 307 14.8 34.8 2.14 10.11 25.90 33.51
5.4 0.88 0.05 1,727 1,382 345 17.1 37.5 3.69 12.31 27.36 28.30
5.4 0.88 0.03 2,836 2,461 374 19.4 40.1 5.85 15.20 30.02 20.60
5.4 0.78 0.07 980 734 246 14.5 34.9 2.40 11.11 28.27 29.88
5.4 0.78 0.05 1,419 1,156 263 17.3 38.2 4.22 13.75 30.26 23.44
5.4 0.78 0.03 2,214 2,031 183 22.5 46.4 9.30 22.42 39.94 0

5.4 0.68 0.07 835 651 184 15.6 36.4 3.28 12.85 30.76 24.78
5.4 0.68 0.05 1,159 970 186 18.8 40.3 5.48 16.41 33.44 16.33
5.4 0.68 0.03 1,697 1,508 189 23.3 46.4 8.80 25.06 37.80 O

4.3 0.88 0.07 1,059 602 457 13.2 34.3 0 9.52 23.38 38.76
4.3 0.88 0.05 1,655 1,239 417 16.5 37.2 2.56 11.26 24.65 33.19
4.3 0.88 0.03 2,794 2,339 455 19.0 39.9 4.90 14.17 27.68 24.91
4.3 0.78 0.07 906 504 402 12.8 34.1 O 10.92 22.77 37.97
4.3 0.78 0.05 1,382 1,052 329 16.1 37.7 2.82 12.77 27.94 28.13
4.3 0.78 0.03 2,203 1,960 243 23.8 48.5 B8.88 23.49 39.29 O

4.3 0.68 0.07 798 392 406 14.2 37.5 0 13.59 29.99 28.08
4.3 0.68 0.05 1,141 923 218 20.9 45.8 5.36 20.15 46.15 0

4.3 0.68 0.03 1,712 1,528 185 24.5 47.0 9.93 26.05 35.68 O

3.2 0.88 0.07 948 426 522 19.9 44.1 0 12.20 23.63 35.83
3.2 0.8 0.05 1,523 920 603 15.5 38.6 0 10.76 22.05 38.85
3.2 0.8 0.03 2,711 2,005 706 11.5 34.0 0 10.26 26.14 35.26

0.78 0.07 836 377 459 19.4 43.
. 1,294 813 480 15.8 41.
0.78 0.03 2,147 1,732 415 7.8 36.4

14.22 32.28 25.16
. 22.18
14.86 32.08 24.72
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By far the most striking of our findings is the insensitivity of total losses
to changes in z. We note, for example, that when y = 0.68 and p = 0.03,
the difference in total costs between the z = 12 and the z = 3.2 situations
is only $4,000 or about 0.18 percent. It is not true, of course, that we can
dismiss the problem of determining the proper z, for the similarity in
total costs noted above was only achieved by following quite different
optimal paths. In particular, if z is large, we wish to build considerably
more capacity in the initial year (13.54 mgd vs. 6.10 mgd in our example).?
The remaining elements of the two plans are not very different, though §1
is also larger when z = 12.

Indeed, another interesting feature of the solution data is the relative
insensitivity of these remaining elements of the optimal plan to changes
in z. For example, for y = 0.78, p = 0.05, as z changes from 12 to 3.2, the
timing portion of the solution vector changes only from T, = 17.5, T, =
377t0 T, = 15.8, T, = 41.6. We may contrast this with the change in
timing for z = 5.4, y = 0.78 as p goes from 0.07 (T, = 14.5, T, = 34.9)
to 0.03 (T, = 22.6, T, = 46.4). Similar, if less pronounced, differential
sensitivity may be observed in the capacity elements of the solution vectors.

The observed differences in total plan cost between z = 12 and z = 3.2
situations are considerably greater under other combinations of y and p.
In general these differences seem to be greater, the greater y and p. When
y = 0.88 and p = 0.07, the cost difference is about $400,000, or 30 percent.
But even this difference is small compared to those observed as p varies
from 0.07 to 0.03 for given z and y. For example, when z = 5.4, and
y = 0.88, the difference between total costs at 3 percent and at 7 percent
discounting is about $1,700,000, or 60 percent of the larger figure (150
percent of the smaller). It seems clear that both total costs and the values
of T, Ts, elc. are most sensitive to the discount rate.

The heavy impact of this parameter is not surprising. When z is large,
the model seeks a path which includes a bit more capacity early in the
period to keep the D/Y ratio down in the area around 1.00 for which
drought losses per capita are small even for large z.1° But when p is smaller,
whatever the optimal path involves it is bound to cost more, since p
acts symmetrically on capital costs and drought losses. The only trade-offs

% The cost of misspecification of z may be found for two situations: if we build the
plan optimal for z = 3.2 and z is “really”” 12, then we lose over $740,000 in increased
drought losses. If we build for z = 12 when it is really 3.2, we lose about $75,000. This
represents the net of $230,000 in increased capital costs and $155,000 in reduced drought
losses. See below for further evidence on the importance of z.

10 This strategy results in lower total drought losses, for given y and p when z = 12

than when z = 3.2, 4.3, or 5.4. The somewhat higher total costs for larger z reflect the
higher present value of capital costs implied by building early.
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possible here involve time, for postponement either of capital costs or of
losses is less well rewarded under a smaller discount rate.

We note that the model’s sensitivity to changes in p extends more deeply
than a mere increase in the present value of total expected costs and losses.
When p changes, so do the two elements of the plan vector particularly
important to planners; i.e., the size of the increment to be built in year
zero and the time to the next increment. For the parameter combination
z = 5.4, y = 0.88, when p falls from 0.07 to 0.03, S, increases from 2.14
to 5.85, or by well over 100 percent.

It is interesting that while rotal costs show some sensitivity to changes
in y, the composition of the optimal path shows virtually none at all. Thus,
for example, when z = 4.3, and p = 0.07, as y changes from 0.68 to 0.88,
total costs increase from $798,000 to $1,059,000 or by about 25 percent
of the lower figure. But, over this same interval, the optimal vector changes
very little in terms of the generally sensitive variables S, and T\.1

By way of tentative summary we may suggest that an accurate estimate
of the appropriate interest rate is at least as important for effective plan-
ning as exact knowledge of ecither the loss function or the scaling factor
(given that the latter are in the range we use). This is true even though we
realize that in determining the optimal plan, the planners need make no
irrevocable decisions except what size to make S,.

11 As discussed below, we had hoped that in each run the solution vectors found using
the three different initial vectors would be the same. Had this invariably happened, we
would have been reasonably confident that we were finding the global minimum. Un-
fortunately, however, we did not achieve such ideal results. Indeed, of the 36 parameter
sets solved with separate initial vectors, only 12 (about 33 percent) gave results which
could be classified as triple agreement on a single optimum. Three different kinds of
problems could be distinguished in the 24 cases of nonagreement, all resulting from the
nonconvexity of the surface. First, for certain parameter combinations, the partial
derivatives show perverse sign behavior in the neighborhood of one or more of the start-
ing vectors. In these instances the program reports as the solution a minor modification
of the particular starting vector. (These ‘“‘solutions” are recognizable even without
knowledge of the global optimum and there is very little danger of their acceptance in an
actual series of computations.) Second, when one of the increment sizes naturally tends
to be small because of the particular parameter combinations, corner solutions again
turn up. This is particularly troublesome in the fairly large number of cases for which s,
tends to zero. Here no solution is obviously incorrect, but all are highly suspect and only
the performance of a large number of runs gives any assurance that the solution accepted
is close to the best attainable. Third, what appear to be classical local optima within the
constraint region are occasionally turned up.

Generally, the method worked best when z was 5.4. For large z, the program tended to
find starting-vector corner solutions when p and/or y were small; when p and y were
large the program moved more securely to a single optimum. When z was small (3.2), the
problem created by the tendency of s, to zero cropped up frequently. We may place the
most faith in the results found for z = 5.4 and 4.3, the least on the results for z = 3.2.



Capacity Expansion Planning Model 157

We move on now to examine the sensitivity of the solutions to changes
in the growth rate of demand and to investigate the implications for the
planning process of uncertainty about these rates of growth. We shall note
that good estimates of these rates are more critical to effective planning
than is knowledge of any of the other key parameters.

EFFECT OF UNCERTAINTY IN PROJECTIONS OF
THE GROWTH OF DEMAND

Our first step is to look at the solutions to the planning model under 9
combinations of population and demand rates of growth. We then calcu-
late the costs of adopting programs optimal under one set of growth rates,
when the actual rates of growth are different. The calculations are per-
formed under two sets of assumptions, one of which represents an extreme
view of the possible losses to be incurred, and the other of which is an
attempt to capture a more realistic set of losses. The difference between
the two cases is the time at which we assume the growth-rate discrepancy
is discovered and a return to the optimal path effected.

OPTIMAL PATHS AND RESULTING COSTS UNDER
VARIOUS SETS OF GROWTH RATES

In Table 41 we summarize the values of costs and of the choice variables
under 9 different combinations of assumed growth rates of population and
per capita demand. We report the results for two different sets of basic
parameters: (i) z = 12, y = 0.78, p = 0.05; and (i1)) z = 4.3, y = 0.78,
p = 0.05.

These results do not hold any particular surprises, although they do
illustrate that the total costs are relatively sensitive to changes in growth
rates. Thus, let us compare the results for an overall growth rate of de-
mand of 0.015 with those for a rate of 0.070. This represents an increase
in the growth rate of about 4.7 times. When z = 4.3, this produces a
difference in costs of 7.3 times, and when z = 12, of 9.8 times. Drought
losses do not vary nearly so much over this range—only by factors of
about 2 in each case. The large differences in total costs thus reflect pro-
portionally even greater changes in capital costs (on the order of 10 or 11
times). These increases are, in turn, based on the fact that total demand
growth to be covered by construction increases far more than in propor-
tion to the increase in the rate of growth. (As the growth rate goes from
0.015 to 0.070, the total growth of demand over 60 years increases by a
factor of 45.) The capital cost increases are, however, dampened by two
factors. First, of course, economies of scale hold down the costs of build-
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ing more capacity. And, second, under the higher growth rate relatively
less of the total required construction is undertaken in the first year of the
period. (Under the 0.015 growth rate, 26.6 percent of the total construction
is carried out in year zero. When the overall growth rate is 0.070, only
6.4 percent is done in the first year.)

Losses From Incorrect Demand Projections: The Case of the Obtuse Planners

If we assume that planners are faced with a range of possible growth
rates for population and per capita demand, we may ask what kinds of
losses (excess costs) are involved in acting on the basis of one such com-
bination when another combination, in fact, describes the state of nature
over the planning period. In order to obtain an estimate of the largest
possible losses for a given strategy, given parameter values, and given range
of growth rates (and given that the bequest constraint is met), we first as-
sume that the planners involved are extremely obtuse: so much so that
they proceed with the chosen plan right through the period, ignoring any
evidence of a discrepancy between the assumed and actual rates of growth.
Only in year 60 do they realize their mistake. At that time they build, if it
is necessary, an increment large enough to meet the bequest constraint.

For simplicity, we consider the set of possible growth-rate combinations
to include only the following 9 elements:

Population
Growth, (8) 0.000 0.015 0.030 0.000 0.015 0.030 0.000 0.0i5 0.030

Per Capita Demand
Growth, (y) 0.000 0.000 0.000 0.020 0.020 0.020 0.040 0.040 0.040

Total Demand
Growth 0.000 0.015 0.030 0.020 0.035 0.050 0.040 0.055 0.070

[We assume y = 0.78 and p = 0.05, in what follows. Results are re-
ported for z = 4.3 and Z = 12. We futher assume that a single rate
of growth holds over the entire period, whether this rate is the one
assumed by the planners or not.]

We assume that the planners accept the pair 8 = 0.015 v = 0.020, as
the best estimate of the future growth rates, and that they act to follow
the plan optimal for this pair. In Table 42 we show the losses resulting
from such a policy when each of the other growth rates in fact turns up.
These losses represent the difference between the actual costs implied by
the assumed strategy and those which would have been incurred under
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TABLE 42. RESULTS OF NON-OPTIMAL POLICIES, WITHOUT REVIEW
(all costs expressed in $1,000)

Z =473
Actual Total cost Capital cost Drought losses
growth
rates Difference Difference Difference
from from from
B % Actual optimal Actual optimal  Actual optimal
0.000 0.000 1,010 820 970 970 40 (150)
0.015 0.000 1,050 392 970 627 80 (235)
0.030 0.000 1,280 6 1,000 43 280 37N
0.000 0.020 1,050 348 970 592 90 (244)
0.015 0.020 1,380 — 1,050 — 330 —
0.030 0.020 7,540 5,070 1,280 (775) 6,260 5,845
0.000 0.040 1,510 10 1,120 41) 390 51
0.015 0.040 9,960 7,275 1,390 (863) 8,570 8,138
0.030 0.040 577,000 572,200 1,920  (2,300) 575,000 574, 500
zZ =12.0
0.000 0.000 1,330 1,150 1,330 1,250 0 (100)
0.015 0.000 1,332 699 1,330 790 2 91
0.030 0.000 1,370 95 1,330 169 40 (74)
0.000 0.020 1,334 570 1,330 654 4 (84)
0.015 0.020 1,500 — 1,370 — T 130 —
0.030 0.020 1.9 x 105 1.9 x 105 1,610 (900) 1.9 X 108 1.9 x 108
0.000 0.040 2,070 317 1,440 (170) 630 487
0.015 0.040 x 107 2.6 x 100 1,730  (1,200) X 107 2.6 X 107

2.6 2.6
0.030 0.040 2.4 x 10 2.4 x 10 2,260 (3,700) 2.4 X 102 2.4 x 10

Note: Figures in parentheses indicate savings.

certainty by using the plan appropriate to the actual growth rate. As such,
they may be thought of as costs of uncertainty.

We note from Table 42 that the results of such doggedly incorrect
decision-making could be literally disastrous. We note, however, that the
magnitude of the problem varies enormously with the size of z, the drought
loss function. It is in this area of uncertain demand projections that we
find the first signs that the planning process is seriously sensitive to z.
Clearly it is important to know what z is in order to choose among alterna-
tive strategies for dealing with this problem.

Losses From Incorrect Demand Projections: A More Realistic Case

Let us consider the same combination of parameter values and the same
assumptions about the range of possible growth rates. In this example,
however, we assume that the planners act so as to retain some flexibility
in the face of uncertainty about these rates. Specifically, before building
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the increment §,, optimal for YA"I under the assumed growth rates 8§ = 0.015
and v = 0.020, the planners check these assumed rates against evidence
from the world. Let us assume that the evidence indicates that the actual
rates of growth are 8 = b and v = g. (We assume that these rates have,
in fact, held since the year 0 and will hold to the horizon.) With these rates
of growth and given the information about z, y and p, there is associated
an optimal plan vector, T1p9, Topgs Sobgs Stvgs S209s S6054- The planners,
acting on their discovery, build increment s,;, in time 73, instead of con-
tinuing with their original plan. Subsequently they build 553, in time Ty,,,
and an amount in year 60 determined by the bequest constraint.

TABLE 43. RESULTS OF NON-OPTIMAL POLICIES, WITH REVIEW
(all costs expressed in $1,000)

Z =473
Actual Total cost Capital cost Drought losses
growth
rates Difference Difference Difference
from from from
8 v Actual optimal Actual optimal Actual optimal
0.000 0.000 353 163 287 287 65 (125)
0.015 0.000 695 36 529 186 166 (149)
0.030 0.000 1,270 0 970 15 300 as)
0.000 0.020 759 47 590 212 169 (165)
0.015 0.020 1,380 0 1,050 0 329 0
0.030 0.020 2,560 90 1,850 (205) 710 295
0.000 0.040 1,500 0 1,140 (30) 360 30
0.015 0.040 2,800 115 2,030 (220) 760 33§
0.030 0.040 5,520 705 3,970 (270) 1,560 975
Z =12.0
0.000 0.000 543 363 542 462 1 99)
0.015 0.000 800 167 791 251 9 (84)
0.030 0.000 1,290 15 1,220 59 70 (44)
0.000 0.020 916 152 906 230 10 (78)
0.015 0.020 1,497 0 1,372 0 125 0
0.030 0.020 3,740 1,000 2,270 (275) 1,460 1,275
0.000 0.040 1,770 17 1,560 (50) 210 67
0.015 0.040 5,400 2,333 2,600 (353) 2,800 2,233
0.030 0.040 62,400 56,209 25 5,990 56,400 56,184

Note: Figures in parentheses indicate savings.

The results for this example are contained in Table 43. We note that,
with one exception, the total costs associated with early adjustment to in-
correct demand projections are of the same order of magnitude as those
resulting from proper projections. Only in the situation for which z = 12,
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and the overall growth rate of demand is, in fact, 0.070 (i.e., when 8 =
0.030, v = 0.040) does a really larger loss show up. This observation puts
into better perspective the question of over-building as a hedge against
uncertainty. The indication is that only in relatively unusual circumstances
would even a serious underestimate of demand growth imply very large losses,
if the planners take the reasonable precaution of checking their assumptions.

With the above evidence in mind on the existence of persuasive reasons
for a bias toward “overbuilding” of water supply systems, it will be par-
ticularly interesting to turn to a consideration of the practical planning
process. In the next chapter, we discuss rules of thumb, based on our com-
putational results, for use in the making of municipal water supply deci-
sions.



